Symmetry realization of the textures of neutrino mass matrix with one vanishing minor and vanishing trace using Froggatt-Nielsen Mechanism

Sangeeta Dey ${ }^{1}$, Mahadev Patgiri ${ }^{2}$

Department of Physics, Cotton University, Guwahati, Assam, India
December 6, 2021

- From the standard model of particle physics, we find that the neutrinos ν_{e}, ν_{μ} and ν_{τ} are massless.
- Masses and mixing of three flavors of neutrino can be described by a (3×3) complex symmetric Majorana mass matrix M_{ν} which is parametrized [1] by a total of nine parameters $\left(m_{1}, m_{2}, m_{3}, \theta_{12}, \theta_{13}, \theta_{23}, \delta, \alpha, \beta\right)$.
- Out of these nine parameters only five of them are measured by neutrino oscillation experiments. They are the three mixing angle $\left(\theta_{12}, \theta_{13}, \theta_{23}\right)$ and two mass squared differences $\left(\Delta m_{21}^{2}, \Delta m_{32}^{2}\right)$

Formalism

- The neutrino mass matrix M_{ν} is given by

$$
M_{\nu}=V\left(\begin{array}{ccc}
m_{1} & 0 & 0 \tag{1}\\
0 & m_{2} & 0 \\
0 & 0 & m_{3}
\end{array}\right) V^{T}
$$

Where V is the PMNS matrix which is parametrized as $V=U P_{\nu}$, where $P_{\nu}=\operatorname{diag}\left(1, e^{i \alpha}, e^{i(\beta+\delta)}\right)$ where α and β are two majorana CP-phases and δ is the Dirac CP phase.

- The eigen values of the neutrino mass matrix M_{ν} are obtained as $\lambda_{1}=m_{1}, \lambda_{2}=m_{2} e^{2 i \alpha}$, $\lambda_{3}=m_{3} e^{2 i(\beta+\delta)}$.
- The elements of the neutrino mass matrix M_{ν} can be expressed as $M_{a b}=\sum_{i=1}^{3} U_{a i} U_{b i} \lambda_{i}$
- The condition for one vanishing minor can be given by

$$
\begin{equation*}
C_{m n}=(-1)^{m+n}\left(M_{\nu(a b)} M_{\nu(c d)}-M_{\nu(e f)} M_{\nu(g h)}\right)=0 \tag{2}
\end{equation*}
$$

where $C_{m n}$ is the cofactor of the elements of M_{ν}.

- There are six textures of neutrino mass matrices with one vanishing minor out of which we have studied here only one case $C_{11}=0, m_{22} m_{33}-m_{23} m_{32}=0$
- We now impose the two constrained equations of one vanishing minor and vanishing trace

$$
\begin{equation*}
\lambda_{1} \lambda_{2} A_{3}+\lambda_{2} \lambda_{3} A_{1}+\lambda_{3} \lambda_{1} A_{2}=0, \lambda_{1}+\lambda_{2}+\lambda_{3}=0 \tag{3}
\end{equation*}
$$

where $A_{i}=\left(U_{p j} U_{q j} U_{r k} U_{s k}-U_{t j} U_{u j} U_{v k} U_{w k}\right)+(j \longleftrightarrow k)$ here $(\mathrm{i}, \mathrm{j}, \mathrm{k})$ is a cyclic permutation of $(1,2,3)$.

- From equation (3) we have

$$
\begin{gather*}
X=\frac{m_{2}}{m_{1}} e^{2 i \alpha}=\frac{\left(A_{3}-A_{1}-A_{2}\right) \pm \sqrt{\left(A_{3}-A_{1}-A_{2}\right)^{2}-4 A_{1} A_{2}}}{2 A_{1}} \tag{4}\\
Y=\frac{m_{3}}{m_{1}} e^{2 i \beta}=\frac{\left(A_{2}-A_{1}-A_{3}\right) \mp \sqrt{\left(A_{3}-A_{1}-A_{2}\right)^{2}-4 A_{1} A_{2}}}{2 A_{1}} e^{-2 i \delta} \tag{5}
\end{gather*}
$$

- The ratios of the magnitude of the neutrino masses are

$$
\begin{equation*}
\rho=\left|\frac{m_{2}}{m_{1}} e^{2 i \alpha}\right|, \sigma=\left|\frac{m_{3}}{m_{1}} e^{2 i \beta}\right| \tag{6}
\end{equation*}
$$

Now ρ and σ are related to each other with the ratio of solar and atmospheric mass squared difference R_{ν} given by

$$
\begin{equation*}
R_{\nu}=\frac{\delta m^{2}}{\Delta m^{2}}=\frac{2\left(\rho^{2}-1\right)}{2 \sigma^{2}-\rho^{2}-1} \tag{7}
\end{equation*}
$$

where $\delta m^{2}=m_{2}^{2}-m_{1}^{2}$ and $\Delta m^{2}=\left|m_{3}^{2}-\frac{1}{2}\left(m_{2}^{2}+m_{1}^{2}\right)\right|$

- It is observed that the pair $\left(X_{+}, Y_{-}\right)$and $\left(X_{-}, Y_{+}\right)$satisfies eq(3). Therefore we carry out our study using these two pairs.

Case $C_{11}=0$
On plotting the graph for α and β for pair $\left(X_{+}, Y_{-}\right)$and $\left(X_{-}, Y_{+}\right)$we get

Figure 1: The first two figures are for the pair $\left(X_{+}, Y_{-}\right)$and the last two figures are for $\left(X_{-}, Y_{+}\right)$. Blue: For NH, Red: For IH.
$\underline{\text { Symmetry realization }}$

- We assumed simple form of M_{R} and M_{D} to produce generic M_{ν} which satisfies the constraints

$$
M_{R}=\left(\begin{array}{rrr}
0 & x & -x \\
x & z & u \\
-x & u & v
\end{array}\right), M_{D}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & b & 0 \\
0 & 0 & i b
\end{array}\right), M_{\nu}=M_{D} M_{R}^{-1} M_{D}^{T}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & \Delta & X \\
0 & X & -\Delta
\end{array}\right)
$$

- General lagrangian [2] that producing to lepton masses are given by
$\mathscr{L}=\left(\frac{\langle\Phi>}{\Lambda}\right)^{Q_{D i}+Q_{l j}} y_{i j}^{(k)} \bar{D}_{i} \phi_{k} \prime_{R j}+\left(\frac{\langle\Phi>}{\Lambda}\right)^{Q_{D i}+Q_{\nu j}} y_{i j}^{(k)} \bar{D}_{i} \tilde{\phi}_{(k)} \nu_{R j}+\left(\frac{\langle\Phi>}{\Lambda}\right)^{Q_{\nu} R_{i}+Q_{\nu} R_{j}} y_{i j}^{(k)} \chi_{k} \bar{\nu}_{R i} \nu_{R j}+h . c$
The $Q_{\alpha}\left(\alpha=D, I_{R}, \nu_{R}\right)$ are the FN charges for the SM fermion ingredients under which different generations may be charged differently. The flavon Φ obtains the vaccum(VEV) $<\Phi>$ that breaks the FN symmetry. We assign FN charges for the lepton charges as
$\bar{D}_{1,2,3}:(a+1, a, a), I_{R 1,2,3}:(0,1,2), \nu_{R 1,2,3}:(d, b, b)$
- Now we impose $Z_{8} \times Z_{2}$ symmetry under which the relevant particle fields transform as Symmetry under Z_{8}
$\nu_{R 1} \rightarrow \omega \nu_{R 1}, \nu_{R 2} \rightarrow \omega^{2} \nu_{R 2}, \nu_{R 3} \rightarrow \omega^{4} \nu_{R 3}, \bar{D}_{L 1} \rightarrow \omega \bar{D}_{L 1}$,
$\bar{D}_{L 2} \rightarrow \omega^{2} \bar{D}_{L 2}, \bar{D}_{L 3} \rightarrow \bar{D}_{L 3}, I_{R 1} \rightarrow \omega^{7} I_{R 1}, I_{R 2} \rightarrow \omega^{2} I_{R 2}, I_{R 3} \rightarrow I_{R 3}, \chi_{1} \rightarrow \omega^{5} \chi_{1}, \chi_{2} \rightarrow$
$\omega^{2} \chi_{2}, \chi_{3} \rightarrow \omega^{4} \chi_{3}, \chi_{4} \rightarrow \chi_{4}, \phi_{1} \rightarrow \omega^{4} \phi_{1}, \phi_{2} \rightarrow \phi_{2}, \phi_{3} \rightarrow \phi_{3}$
Symmetry under Z_{2}
$\nu_{R 1} \rightarrow \nu_{R 1}, \nu_{R 2} \rightarrow-\nu_{R 3}, \nu_{R 3} \rightarrow \nu_{R 2}$,
$\bar{D}_{L 1} \rightarrow \bar{D}_{L 1}, \bar{D}_{L 2} \rightarrow-\bar{D}_{L 3}, \bar{D}_{L 3} \rightarrow-i \bar{D}_{L 2} I_{R 1} \rightarrow I_{R 1}, I_{R 2} \rightarrow-I_{R 3}, I_{R 3} \rightarrow i I_{R 2}$
$\chi_{1} \rightarrow \chi_{1}, \chi_{2} \rightarrow \chi_{2}, \chi_{3} \rightarrow \chi_{4}, \chi_{4} \rightarrow \chi_{3}, \phi_{1} \rightarrow \phi_{2}, \phi_{2} \rightarrow \phi_{1}$,
$\phi_{3} \rightarrow \phi_{3}$
Forming the required bilinears dictated by Z_{8} symmetry we obtain

$$
\nu_{R i}^{T} \nu_{R j}=\left(\begin{array}{ccc}
\omega^{2} & \omega^{3} & \omega^{5} \\
\omega^{3} & -1 & \omega^{6} \\
\omega^{5} & \omega^{6} & 1
\end{array}\right), \bar{D}_{L i} \nu_{R j}=\left(\begin{array}{ccc}
\omega^{2} & \omega^{3} & \omega^{5} \\
\omega^{3} & -1 & \omega^{6} \\
\omega & \omega^{2} & -1
\end{array}\right), \bar{D}_{L i} I_{R j}=\left(\begin{array}{ccc}
1 & \omega & \omega^{7} \\
\omega^{3} & -1 & \omega^{2} \\
\omega & \omega^{2} & 1
\end{array}\right)
$$

The lagrangian dictated by Z_{8} is

$$
\begin{align*}
& \mathscr{L}_{M}^{Z_{8}}= Y_{\chi^{12} \chi_{1} \nu_{R 1}^{T} c^{-1} \nu_{R 2}+Y_{\chi^{23} \chi_{2}}^{2} \nu_{R 2}^{T} c^{-1} \nu_{R 3}+Y_{\chi^{13}}^{1} \tilde{\chi}_{1} \nu_{R 1}^{T} c^{-1} \nu_{R 3}} \\
&+Y_{\chi^{22} \chi_{3} \nu_{R 2}^{T} c^{-1} \nu_{R 2}+Y_{\chi^{33} \chi_{4}}^{4} \nu_{R 3}^{T} c^{-1} \nu_{R 3}+Y_{D_{22}}^{1} \tilde{\phi}_{1} \bar{D}_{L 2} \nu_{R 2}+Y_{D_{33}}^{2} \tilde{\phi}_{2} \bar{D}_{L 3} \nu_{R 3}} \\
& \quad+Y_{l_{11}}^{3} \phi_{1} \bar{D}_{L 1} I_{R 1}+Y_{l_{22}}^{1} \phi_{1} \bar{D}_{L 2} I_{R 2}+Y_{l_{33}}^{2} \phi_{2} \bar{D}_{L 3} \nu_{R 3} \tag{8}
\end{align*}
$$

$$
\begin{align*}
& \mathscr{L}_{M}^{Z_{8}} \xrightarrow{Z_{2}}-Y_{\chi^{12}}^{1} \tilde{\chi}_{1} \nu_{R 1}^{T} c^{-1} \nu_{R 3}+Y_{\chi^{23} \chi_{2} \nu_{R 3}^{T} c^{-1} \nu_{2}-Y_{\chi^{13}}^{1} \chi_{1} \nu_{R 1}^{T} c^{-1} \nu_{R 2}} \\
& \quad+Y_{\chi^{22} \chi_{4} \nu_{R 3} c^{-1} \nu_{R 3}+Y_{\chi^{33} \chi_{3} \nu_{R 2}^{T} c^{-1} \nu_{R 2}-i Y_{D_{22}}^{1} \tilde{\phi}_{2} \bar{D}_{L 3} \nu_{R 3}+i Y_{D_{33}}^{2} \tilde{\phi}_{1} \bar{D}_{L 2} \nu_{R 2}}} \begin{array}{l}
\quad+Y_{l_{22}}^{1} \phi_{2} \bar{D}_{L 3} I_{R 3}+Y_{l_{11}}^{3} \phi_{3} \bar{D}_{L 1} I_{R 1}+Y_{l_{33}}^{2} \phi_{1} \bar{D}_{L 2} \nu_{R 2}
\end{array}
\end{align*}
$$

$Z_{8} \times Z_{2}$ implies the following constraints on the Yukawa coupling.
$Y_{\chi^{12}}^{1}=-Y_{\chi^{13}}^{1}, Y_{\chi^{23}}^{2}=Y_{\chi^{23}}^{2}, Y_{\chi^{13}}^{1}=-Y_{\chi^{12}}^{1}, Y_{\chi^{22}}^{3}=Y_{\chi^{33}}^{4}, Y_{\chi^{33}}^{4}=Y_{\chi^{22}}^{3}, Y_{D^{12}}^{1}=i Y_{D^{33}}^{2},-i Y_{D^{22}}^{1}=$ $Y_{\chi^{33}}^{2}, Y_{I 11}^{3}=Y_{I 1}^{3}, Y_{l_{22}}^{1}=Y_{l 33}^{2}, Y_{l^{22}}^{1}=Y_{\chi^{33}}^{2}$
Therefore M_{ν} turn out to be

Results and Conclusion

- For case $C_{11}=0$ we observe that for $\left(X_{+}, Y_{-}\right)$, for the allowed range of $\delta, \alpha=\left(-25^{\circ}, 25^{\circ}\right)$ and $\beta=\left(-45^{\circ}, 45^{\circ}\right)$ for NH . While in case of $\mathrm{IH}, \alpha=\left(-20^{\circ}, 20^{\circ}\right)$ and $\beta=\left(-45^{\circ},-40^{\circ}\right) \oplus\left(40^{\circ}, 45^{\circ}\right)$. Since this case is allowed only for IH for the pair (X_{-}, Y_{+}), we observe that $\alpha=\left(-40^{\circ}, 40^{\circ}\right)$ and $\beta=\left(-35^{\circ},-45^{\circ}\right) \oplus\left(-15^{\circ}, 0\right) \oplus\left(25^{\circ}, 40^{\circ}\right)$. We have done the symmetry realization of case $C_{11}=0$ using FN mechanism and $Z_{8} \times Z_{2}$ symmetry group.

References

1)W. Wang, Neutrino mass textures with one vanishing minor and two equal cofactors, The European Physical Journal C, vol. 73, no. 9, pp. 18, 2013.
2)J. Han, R. Wang, W. Wang, and X.-N. Wei, Neutrino mass matrices with one texture equality and one vanishing neutrino mass, Physical Review D, vol. 96, no. 7, p. 075043, 2017.
3)A. Ismael, M. AlKhateeb, N. Chamoun, and E. Lashin, Texture of single vanishing subtrace in neutrino mass matrix, Physical Review D, vol. 103, no. 3, p. 035020, 2021.

