Minimally modified A_4 model for neutrino masses and mixings

XII Biennial National Conference of Physics Academy of North East (PANE 2021)

15-17 Dec 2021, Tripura University

Victoria Puyam

Manipur University

06-12-2021

INTRODUCTION

 The A₄ flavor symmetry model proposed by Altarelli and Feruglio produces tri-bimaximal mixing.

•

$$U_{TBM} = \begin{pmatrix} \sqrt{\frac{2}{6}} & \sqrt{\frac{1}{3}} & 0\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}}\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \end{pmatrix}$$

- However, recent reactor neutrino experiments have indicted that the $U_{e3} \approx 0.15$.
- In this work, we present a minimally modified A_4 model that can accommodates the new global fit data.

MINIMALLY MODIFIED A₄ MODEL

Fields	1	e ^c	μ^{c}	$ au^c$	ν^{c}	$H_{u,d}$	$\phi_{\mathcal{S}}$	φт	ξ_1	ξ_2	ξ3
A_4	3	1	1	1"	3	1	3	3	1	1"	1'
<i>Z</i> ₃	ω^2	ω	ω	ω	1	1	ω	1	ω	ω	ω

Where

Fields	Vacuum Expectation Value(VEV)			
$<\phi_{\it S}>$	(v_s, v_s, v_s)			
$<\phi_{T}>$	$(v_T,0,0)$			
$< H_u>, < H_d>$	V_u , V_d			
$<\xi_1>$, $<\xi_2>$, $<\xi_3>$	u_1, u_2, u_3			

$$-L_{m} = \frac{Y_{c}}{\Lambda} e^{c} (\phi_{T} I)_{1} H_{d} + \frac{Y_{\mu}}{\Lambda} \mu^{c} (\phi_{T} I)_{1'} H_{d} + \frac{Y_{\tau}}{\Lambda} \tau^{c} (\phi_{T} I)_{1''} H_{d} + y_{1} \xi_{1} (I \nu^{c})_{1} + y_{2} (\xi_{2})_{1''} (I \nu^{c})_{1'} + y_{3} (\xi_{3})_{1'} (I \nu^{c})_{1''} + \frac{Y_{2}}{\Lambda} \phi_{S} (I H_{u} \nu^{c})_{A} + \frac{Y_{b}}{\Lambda} \phi_{S} (I H_{u} \nu^{c})_{S} + M(\nu^{c} H_{u} \nu^{c}) + \text{h.c}$$
where $y_{i} \xi (I \nu^{c}) = \frac{Y_{i}}{\Lambda} \xi (I h_{u} \nu^{c})$, i=1,2,3

• We consider the basis where charge lepton mass matrix is diagonal.

$$m_D = \begin{pmatrix} 2a+c & -a+b+d & -a-b+e \\ -a-b+ & 2a+e & -a+b+c \\ -a+b+e & -a-b+c & 2a+d \end{pmatrix}$$

$$M_R = \begin{pmatrix} m & 0 & 0 \\ 0 & 0 & m \\ 0 & m & 0 \end{pmatrix}$$

- $m_{\nu} = (m_D)^T M_P^{-1} m_D$
- Diagonalisation: $U_{PMNS}^* m_{\nu} U_{PMNS}^{\dagger}$

A global-fit result for neutrino oscillation are given in the table:

Neutrino oscillation parameters	Best fit $\pm 1\sigma$	3σ	
$ heta_{12}/^\circ$	34.3 ± 1.0	31.4-37.4	
$ heta_{13}/^{\circ}(NO)$	$8.53^{+0.13}_{-0.12}$	8.13-8.92	
$ heta_{13}/^{\circ}(IO)$	$8.58^{+0.12}_{-0.14}$	8.17-8.96	
$ heta_{23}/^{\circ}(NO)$	49.26 ± 0.79	41.20-51.33	
$ heta_{23}/^{\circ}(IO)$	49.46 ± 0.79	41.16-51.25	
$\Delta m_{21}^2 [10^{-5} eV^2]$	$7.50^{+0.22}_{-0.20}$	6.94-8.14	
$ \Delta m_{31}^2 [10^{-3}eV^2](NO)$	$2.55_{-0.03}^{+0.02}$	2.47-2.63	
$ \Delta m_{31}^2 [10^{-3}eV^2](10)$	$2.45_{-0.03}^{+0.02}$	2.37-2.53	

$$m_1+m_2+m_3 <$$
 0.12 eV(NO) and 0.15 eV(IO) . δ° is (194 $^{+24}_{-22}$ for NH and 28 $^{+26}_{-28}$ for IH).

RESULTS

Figure: The allowed region of the oscillation parameters(NH) predicted by the model.

Conclusion

- The prediction of θ_{23} , θ_{13} and θ_{13} are around 49°, 8.43° and 35.7° respectively.
- The CP-violating phase δ is found around 191.4°.

REFERENCES

- Lei, Minjie and Wells, James D., "Minimally modified A_4 Altarelli-Feruglio model for neutrino masses and mixings and its experimental consequences", 2020, PhysRevD.102.016023
- Chamoun, N. and Hamzaoui, C. and Lashin, S. and Nasri, S. and Toharia, M., "Phase broken $\mu-\tau$ symmetry and the neutrino mass hierarchy", 2019,arXiv:1905.00675.
- . Kleesick, et al., Eur. Phys. J. C to be published, arXiv:1806.08312 (2018).
- i . Weinberg, Phys. Rev. D 22,1694 (1980) .
- Zhao, Zhen-hua, "On the breaking of mu-tau flavor symmetry", Conference on New Physics at the Large Hadron Collider Singapore, Singapore, February 29-March 4, 2016.

THANK YOU

